09.12.2013
В новой книге Александра Золотарева рассматривается возможность установления количественных предпочтений между альтернативами (определяющими приемлемое понимание компромисса между ними) на основе отношения к вектору весовых коэффициентов скалярных критериев как к оптимизируемым параметрам, т.е. на основе рассмотрения задач оптимальной параметризации критериальной свертки.
При этом задача векторной оптимизации разбивается на два последовательных этапа: на первом из них – строится параметрическое множество оптимальных решений для свертки векторного критерия на множестве допустимых решений. На последующем этапе реализуется задача отыскания оптимального весового вектора свертки критериев на выделенном параметрическом множестве оптимальных решений из области допустимых решений.
В частности, в качестве критериальной свертки используется среднеквадратичная взвешенная (с указанным весовым вектором искомых параметров) норма отклонения векторного критерия от «идеального» значения критериального вектора. Минимизация по переменным модели такого скалярного критерия на первом этапе позволяет выделить параметрическое множество квазиоптимальных решений. На втором шаге для указанного множества решений реализуется оптимизационная задача относительно вектора весов и агрегированного скалярного критерия, отражающего суммарный уровень потерь, обусловленных нереализованностью идеального значения векторного критерия.
Такой подход к определению обоснованных весов компонент векторного критерия на основе решения соответствующей задачи оптимальной параметризации, позволяет формализовать технологию планирования оптимальных распределительных процедур, понизив сложившийся уровень зависимости различных стадий и результатов процесса принятия решений от эвристических факторов.
Комментарии
Пока нет комментариев